Enzyme-free Passage of Human Pluripotent Stem Cells by Controlling Divalent Cations

2015 
Enzymes used for passaging human pluripotent stem cells (hPSCs) digest cell surface proteins, resulting in cell damage. Moreover, cell dissociation using divalent cation-free solutions causes apoptosis. Here we report that Mg2+ and Ca2+ control cell-fibronectin and cell-cell binding of hPSCs, respectively, under feeder- and serum-free culture conditions without enzyme. The hPSCs were detached from fibronectin-, vitronectin- or laminin-coated dishes in low concentrations of Mg2+ and remained as large colonies in high concentrations of Ca2+. Using enzyme-free solutions containing Ca2+ without Mg2+, we successfully passaged hPSCs as large cell clumps that showed less damage than cells passaged using a divalent cation-free solution or dispase. Under the same conditions, the undifferentiated and early-differentiated cells could also be harvested as a cell sheet without being split off. Our enzyme-free passage of hPSCs under a serum- and feeder-free culture condition reduces cell damage and facilitates easier and safer cultures of hPSCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    27
    Citations
    NaN
    KQI
    []