Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy.

2021 
Monolayer transition metal dichalcogenide quantum dots (TMDC QDs) could exhibit unique photophysical properties, because of both lateral quantum confinement effect and edge effect. However, there is little fundamental study on the quantum-confined exciton dynamics in monolayer TMDC QDs, to date. Here, by selective excitations of monolayer WS2 QDs in broadband transient absorption (TA) spectroscopic experiments, the excitation-wavelength-dependent ground state bleaching signals corresponding to the quantum-confined exciton states are directly observed. Compared to the time-resolved photophysical properties of WS2 nanosheets, the selected monolayer WS2 QDs only show one ground state bleaching peak with larger initial values for the linearly polarized anisotropy of band-edge excitons, probably due to the expired spin-orbit coupling. It suggests a whole change of band structure for monolayer WS2 QDs. In the femtosecond time-resolved circular polarization anisotropy experiments, it is found a valley depolarization time of ~100 fs for WS2 nanosheets at room temperature, which is not observed for monolayer WS2 QDs. Our findings suggest a strong state-mixing of band-edge valley excitons responsible for the large linear polarization in monolayer WS2 QDs, which could be helpful for understanding on the exciton relaxation mechanisms in colloidal monolayer TMDC QDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []