Synthesis and properties of novel pyranylidene-based organic sensitizers for dye-sensitized solar cells

2019 
Abstract We report herein the synthesis of nine new molecularly engineered metal-free organic pyranylidene-based dyes as efficient photosensitizers for Dye-Sensitized Solar Cells (DSSCs). Their photophysical, electrochemical, and photovoltaic properties were investigated, and their excited states have been modelled using Time-Dependent Density Functional Theory (TD-DFT). The investigation of the photovoltaic performances of this series of new dyes provided structure-property relationships where their Power Conversion Efficiencies (PCE) could be correlated to structural features, such as the length of the π-conjugated spacer and the nature of the substituents on the upper (positions 2 and 6) and lower parts (substituents on the exocyclic carbon) of the pyranylidene electron donor moiety. While these dyes fulfilled the criteria of efficient sensitizers for TiO2-based DSSCs, their photovoltaic performances were found to depend on the dye packing arrangements controlled by substituents on the pyranylidene group. The highest Power Conversion Efficiency of 5.52% was reached with the 20a dye containing phenyl substituent groups in both upper and lower parts of the pyranylidene fragment and with one thienyl π-conjugated spacer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    12
    Citations
    NaN
    KQI
    []