Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the Kv2.1 potassium channel

2009 
KV2.1 is the prominent somatodendritic sustained or delayed rectifier voltage-gated potassium (Kv) channel in mammalian central neurons, and is a target for activity-dependent modulation via calcineurin-dependent dephosphorylation. Using hanatoxin-mediated block of KV2.1 we show that, in cultured rat hippocampal neurons, glutamate stimulation leads to significant hyperpolarizing shifts in the voltage-dependent activation and inactivation gating properties of the KV2.1-component of delayed rectifier K+ (IK) currents. In computer models of hippocampal neurons, these glutamate-stimulated shifts in the gating of the KV2.1-component of IK lead to a dramatic suppression of action potential firing frequency. Current-clamp experiments in cultured rat hippocampal neurons showed glutamate-stimulation induced a similar suppression of neuronal firing frequency. Membrane depolarization also resulted in similar hyperpolarizing shifts in the voltage-dependent gating properties of neuronal IK currents, and suppression of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    76
    Citations
    NaN
    KQI
    []