Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice.

2021 
Current study deals with a novel multi-epitope vaccine designed in silico and its confirmation experiments for potential efficacy in BALB/c mice. Major histocompatibility complex (MHC)-binding and B-cell binding epitopes of five Toxoplasma antigens (SAG1, ROP16, GRA12, MIC4 and M2AP) were predicted. Selected epitopes were fused together using SAPGTP linker, and antigenicity, allergenicity, physico-chemical features, secondary and tertiary structures and validations were all performed via bioinformatics servers. Then, vaccine construct was cloned into pLEXSY-neo 2.1 vector. After Leishmania tarentolae transfection, live recombinant and wild parasites were subcutaneously injected into 6-8 week female BALB/c mice and immune responses were measured. Results showed that the peptide possessed 282 amino acid residues with average molecular weight of 28.06 kDa. About 90% of the peptide residues were incorporated in favored and allowed regions of the Ramachandran plot. Vaccinated mice showed remarkably elevated levels of specific antibodies (P < 0.05) with predominance of IgG2a production. Also, a Th1 immune response with production of IFN-γ and relatively increased survival rate against intraperitoneal challenge with RH strain was demonstrated in immunized mice than control groups (P < 0.05). Also, very low levels of IL-4 were demonstrated, which showed statistically significant association with controls (P < 0.05). The findings clarified that multi-epitope vaccine expressed in Leishmania tarentolae induced significant immune responses against acute toxoplasmosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    4
    Citations
    NaN
    KQI
    []