Reducing driver distraction by improving secondary task performance through multimodal touchscreen interaction

2019 
Methods of information presentation in the automotive space have been evolving continuously in recent years. As technology pushes forward the boundaries of what is possible, automobile manufacturers are trying to keep up with the current trends. Traditionally, the often-long development and quality control cycles of the automotive sector ensured slow yet steady progress. However, the exponential advancement in the mobile and hand-held computing space seen in the last 10 years has put immense pressure on automobile manufacturers to try to catch up. For this reason, we now see manufacturers trying to explore new techniques for in-vehicle interaction (IVI), which were ignored in the past. However, recent attempts have either simply extended the interaction model already used in mobile or handheld computing devices or increased visual-only presentation-of-information with limited expansion to other modalities (i.e. audio or haptics). This is also true for system interaction which generally happens within complex driving environments, making the primary task of a driver (driving) even more challenging. Essentially, there is an inherent need to design and research IVI systems that complement and natively support a multimodal interaction approach, providing all the necessary information without increasing driver’s cognitive load or at a bare minimum his/her visual load. In this research we focus on the key elements of IVI system: touchscreen interaction by developing prototype devices that can complement the conventional visual and auditory modalities in a simple and natural manner. Instead of adding primitive touch feedback cues to increase redundancy or complexity, we approach the issue by looking at the current requirements of interaction and complementing the existing system with natural and intuitive input and output methods, which are less affected by environmental noise than traditional multimodal systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    2
    Citations
    NaN
    KQI
    []