A Mechanosensitive RhoA Pathway that Protects Epithelia against Acute Tensile Stress

2018 
Summary Adherens junctions are tensile structures that couple epithelial cells together. Junctional tension can arise from cell-intrinsic application of contractility or from the cell-extrinsic forces of tissue movement. Here, we report a mechanosensitive signaling pathway that activates RhoA at adherens junctions to preserve epithelial integrity in response to acute tensile stress. We identify Myosin VI as the force sensor, whose association with E-cadherin is enhanced when junctional tension is increased by mechanical monolayer stress. Myosin VI promotes recruitment of the heterotrimeric Gα12 protein to E-cadherin, where it signals for p114 RhoGEF to activate RhoA. Despite its potential to stimulate junctional actomyosin and further increase contractility, tension-activated RhoA signaling is necessary to preserve epithelial integrity. This is explained by an increase in tensile strength, especially at the multicellular vertices of junctions, that is due to mDia1-mediated actin assembly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    10
    Citations
    NaN
    KQI
    []