Electrical generation and detection of terahertz signal based on spin-wave emission from ferrimagnets

2020 
Terahertz (THz) signals, mainly generated by photonic or electronic approaches, are being sought for various applications, whereas the development of magnetic source might be a necessary step to harness the magnetic nature of electromagnetic radiation. We show that the relativistic effect on the current-driven domain-wall motion induces THz spin-wave emission in ferrimagnets. The required current density increases dramatically in materials with strong exchange interaction and rapidly exceeds 1012 A m-2, leading to the device breakdown and thus the lack of experimental evidence. By translating the collective magnetization oscillations into voltage signals, we propose a three-terminal device for the electrical detection of THz spin wave. Through material engineering, wide frequency range from 264 GHz to 1.1 THz and uniform continuous signals with improved output power can be obtained. As a reverse effect, the spin wave generated in this system is able to move ferrimagnetic domain wall. Our work provides guidelines for the experimental verification of THz spin wave, and could stimulate the design of THz spintronic oscillators for wideband applications as well as the all-magnon spintronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    0
    Citations
    NaN
    KQI
    []