The Fluctuations of Blocked Ionic Current Reveal the Instantaneous Statuses of DNA in Graphene Nanopore

2013 
Extracting the sequence information of DNA from the blocked ionic current is the crucial step of the ionic current-based nanopore sequencing approaches. The thinnest graphene nanopore, which contained only one layer of carbon atoms, potentially has ultra-high DNA sequencing sensitivity. However, the dynamical translocation information of DNA contained in the blocked ionic current has not been well understood to date. In this letter, an assessment to the sensitivity of ionic current-based graphene nanopore DNA sensing approach was carried out using molecular dynamics simulations. By filtering the molecular thermal motion induced noise of ionic current, we found that the instantaneous conformational variations of DNA in graphene nanopore could be revealed from the fluctuations of the denoised ionic current. However, the blockage of ionic current which induced by the proximity of the DNA base-pairs to the nanopore (within 1.5 nm) was also observed. Although the expected single-base resolution of graphene nanopore should be enhanced by further studies, our findings indicated that the ionic current-based graphene nanopore sensing approach has high sensitivity to the instantaneous translocation status of DNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    18
    Citations
    NaN
    KQI
    []