Relative Contributions of Cytochrome CYP3A4 Versus CYP3A5 for CYP3A-Cleared Drugs Assessed In Vitro Using a CYP3A4-Selective Inactivator (CYP3cide)

2014 
Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Designation of metabolism by CYP3A commonly refers to the potential contribution by one or both of two enzymes, CYP3A4 and CYP3A5. The metabolic turnover of 32 drugs known to be largely metabolized by CYP3A was examined in human liver microsomes (HLMs) from CYP3A5 expressers (\*1/\*1 genotype) and nonexpressers (\*3/\*3 genotype) in the presence and absence of ketoconazole and CYP3cide (a selective CYP3A4 inactivator) to calculate the contribution of CYP3A5 to metabolism. Drugs with the highest contribution of CYP3A5 included atazanavir, vincristine, midazolam, vardenafil, otenabant, verapamil, and tacrolimus, whereas 17 of the 32 tested showed negligible CYP3A5 contribution. For specific reactions in HLMs from \*1/\*1 donors, CYP3A5 contributes 55% and 44% to midazolam 1′- and 4-hydroxylation, 16% to testosterone 6 β -hydroxylation, 56% and 19% to alprazolam 1′- and 4-hydroxylation, 10% to tamoxifen N-demethylation, and 58% to atazanavir p -hydroxylation. Comparison of the in vitro observations to clinical pharmacokinetic data showed only a weak relationship between estimated contribution by CYP3A5 and impact of CYP3A5 genotype on oral clearance, in large part because of the scatter in clinical data and the low numbers of study subjects used in CYP3A5 pharmacogenetics studies. These data should be useful in guiding which drugs should be evaluated for differences in pharmacokinetics and metabolism between subjects expressing CYP3A5 and those who do not express this enzyme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    67
    Citations
    NaN
    KQI
    []