Skp2 Expression Is Inhibited by Arsenic Trioxide through the Upregulation of miRNA-330-5p in Pancreatic Cancer Cells

2019 
Arsenic trioxide (ATO) has been found to exert its anti-cancer activity in various human malignancies. In our previous report, we have shown that ATO inhibited cell growth and invasion via downregulation of Skp2 in pancreatic cancer (PC) cells. It has been extensively demonstrated that microRNAs (miRNAs) play a pivotal role in tumorigenesis. ATO might induce PC cell apoptosis and regulate Skp2 downregulation through the regulation of miRNAs. One study has demonstrated that miR-330-5p exerts a tumor-suppressive function in PC cell lines. Here, we investigated the role of miRNA-330-5p in ATO-mediated anti-tumor activity and explored whether ATO could regulate miR-330-5p in PC cells. We found that ATO treatment upregulated the expression of miR-330-5p. Moreover, miR-330-5p inhibitor rescued the ATO-mediated tumor-suppressive function. The combination of miR-330-5p mimic with ATO reduced cell growth, motility, and invasion, and enhanced apoptosis to a greater degree in PC cells. This study suggests that the combination of miR-330-5p mimic with ATO may be a potential therapeutic strategy for the treatment of PC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    13
    Citations
    NaN
    KQI
    []