Zebrafish model of human Zellweger syndrome reveals organ specific accumulation of distinct fatty acid species and widespread gene expression changes

2021 
In Zellweger syndrome (ZS), lack of peroxisome function causes physiological and developmental abnormalities in many organs such as the brain, liver, muscles, and kidneys, but little is known about the exact pathogenic mechanism. By disrupting the zebrafish pex2 gene, we established a disease model for ZS and found that it exhibits a pathological condition and metabolic failures similar to that of human patients. By comprehensive analysis of fatty acid profile, we found organ specific accumulation and reduction of distinct fatty acid species such as an accumulation of ultra-very-long-chain polyunsturated fatty acids (ultra-VLCPUFAs) in the brain of pex2 mutant fish. Transcriptome analysis using microarray also revealed mutant-specific gene expression changes that might lead to the symptom, which include reduction of crystallin, troponin, parvalbumin, and fatty acid metabolic genes. Our data indicated that the loss of peroxisome results in widespread metabolic and gene expression changes beyond the causative peroxisomal function. These results suggest the genetic and metabolic basis of the pathology of this devastating human disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []