THREE-DIMENSIONAL LASER SCANNING TWO-PHOTON FLUORESCENCE CONFOCAL MICROSCOPY OF POLYMER MATERIALS USING A NEW, EFFICIENT UPCONVERTING FLUOROPHORE

2006 
Three-dimensional confocal imaging of polymer samples was achieved by the use of two-photon excited fluorescence in both positive and negative contrast modes. The fluorophore was a new and highly efficient two-photon induced upconverter, resulting in improved signal strength at low pumping power. Because of the relatively long wavelength of the excitation source (798 nm from a mode-locked Ti:Sap-phire laser), this technique shows a larger penetration depth into the samples than provided by conventional single-photon fluorescence confocal microscopy. Single-photon and two-photon images of the same area of each sample show significant differences. The results suggest the possibility of using two-photon confocal microscopy, in conjunction with highly efficient fluorophores, as a tool to study the surface, interface, and fracture in material science applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    23
    Citations
    NaN
    KQI
    []