Heat Transport in Herbertsmithite: Can a Quantum Spin Liquid Survive Disorder?

2021 
Arguably the most favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu$_3$(OH)$_6$Cl$_2$, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu$_3$(OH)$_6$Cl$_2$ that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu$_3$(OH)$_6$Cl$_2$ and a related QSL candidate Cu$_3$Zn(OH)$_6$FBr, we observed no contribution by any spin excitation nor any field-induced change to the thermal conductivity. These results impose different constraints on various scenarios about the ground state of these two kagome compounds: while a gapped QSL, or certain quantum paramagnetic state other than a QSL, is compatible with our results, a gapless QSL must be dramatically modified by the disorder so that gapless spin excitations are localized.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []