Secreted PEDF modulates fibroblast collagen synthesis through M1 macrophage polarization under expanded condition.

2021 
Tissue expansion is widely used to obtain new skin tissue for repairing defects in the clinical practice of plastic surgery. One major complication can be dermal thinning during expansion, which usually leads to skin rupture. Collagen synthesis can determine dermal thickness and can be influenced by macrophage polarization during expansion. The aim of the study was to test whether pigment epithelium-derived factor (PEDF) could be a modulator of collagen synthesis in fibroblasts by regulating macrophage polarization during skin expansion. Our results showed that PEDF mRNA expression was increased in expanded human and mouse epidermis. PEDF protein levels were elevated in the subcutaneous exudates of a rat skin expansion model. Increased PEDF mRNA expression was accompanied by dermal thinning during a three-week expansion protocol. Subcutaneous injection of PEDF in vivo further resulted in dermal thinning and cell number increase of M1 macrophage in the expanded skin. PEDF also promoted macrophage polarization in vitro to the M1 subtype under hypoxic conditions. PEDF did not influence collagen gene expression in fibroblasts directly, but attenuated collagen synthesis in a macrophage-mediated manner. Additionally, blockage of PEDF receptors on macrophages with inhibitors rescued collagen synthesis in fibroblasts. Our research demonstrated PEDF elevation in expanded skin leads to dermal thinning through M1 macrophage-mediated collagen synthesis inhibition in fibroblasts. Our results could form a basis for the development of novel strategies to improve skin integrity in expanded skin by using PEDF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []