Ultrahigh-sensitivity optical power monitor for Si photonic circuits.

2021 
A phototransistor is a promising candidate as an optical power monitor in Si photonic circuits since the internal gain of photocurrent enables high sensitivity. However, state-of-the-art waveguide-coupled phototransistors suffer from a responsivity of lower than $10^3$ A/W, which is insufficient for detecting very low power light. Here, we present a waveguide-coupled phototransistor consisting of an InGaAs ultrathin channel on a Si waveguide working as a gate electrode to increase the responsivity. The Si waveguide gate underneath the InGaAs ultrathin channel enables the effective control of transistor current without optical absorption by the gate metal. As a result, our phototransistor achieved the highest responsivity of approximately $10^6$ A/W among the waveguide-coupled phototransistors, allowing us to detect light of 621 fW propagating in the Si waveguide. The high responsivity and the reasonable response time of approximately 100 $\mu$s make our phototransistor promising as an effective optical power monitor in Si photonics circuits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []