Attention differentially modulates multiunit activity in the lateral geniculate nucleus and V1 of macaque monkeys.

2021 
Attention promotes the selection of behaviorally relevant sensory signals from the barrage of sensory information available. Visual attention modulates the gain of neuronal activity in all visual brain areas examined, although magnitudes of gain modulations vary across areas. For example, attention gain magnitudes in the dorsal lateral geniculate nucleus (LGN) and primary visual cortex (V1) vary tremendously across fMRI measurements in humans and electrophysiological recordings in behaving monkeys. We sought to determine whether these discrepancies are due simply to differences in species or measurement, or more nuanced properties unique to each visual brain area. We also explored whether robust and consistent attention effects, comparable to those measured in humans with fMRI, are observable in the LGN or V1 of monkeys. We measured attentional modulation of multiunit activity in the LGN and V1 of macaque monkeys engaged in a contrast change detection task requiring shifts in covert visual spatial attention. Rigorous analyses of LGN and V1 multiunit activity revealed robust and consistent attentional facilitation throughout V1, with magnitudes comparable to those observed with fMRI. Interestingly, attentional modulation in the LGN was consistently negligible. These findings demonstrate that discrepancies in attention effects are not simply due to species or measurement differences. We also examined whether attention effects correlated with the feature selectivity of recorded multiunits. Distinct relationships suggest that attentional modulation of multiunit activity depends upon the unique structure and function of visual brain areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []