Use of computed tomography to assess subcutaneous drug dispersion with recombinant human hyaluronidase PH20 in a swine model

2020 
Abstract Introduction Subcutaneous (SC) formulations of therapeutics with recombinant human hyaluronidase PH20 (rHuPH20) are currently approved across various disease indications. The rHuPH20-mediated enzymatic degradation of SC hyaluronan (HA) facilitates bulk fluid flow and dispersion of co-administered therapeutics. However, current methods of quantifying dispersion in the SC space are limited. Here, a novel method is outlined to quantify and follow rapid SC volumetric dispersion of a representative therapeutic fluid in the presence of rHuPH20 using computed tomography (CT). Methods Ten Yucatan miniature swine were randomized to three groups. Animals received simultaneous infusions of contrast agent (CA) alone (left side of the animal) or in combination with rHuPH20 (right side) at infusion rates of 2.5, 5, or 10 mL/min. Spiral CT scans (1.5 mm thickness) were conducted before and after the infusion and at regular time intervals throughout. Scans were used to create three-dimensional (3D) reconstructions of the fluid pockets and analyze surface area, volume, and sphericity. Results 3D reconstruction showed increased dispersion of CA with rHuPH20 compared with CA alone, with fenestration and increased dispersion in the craniocaudal and lateromedial directions. The CA with rHuPH20 fluid pockets showed an average increase of 46% in surface area (p = 0.001), a 35% increase in volume (p = 0.001) and a 17% decrease in sphericity post-infusion compared with CA alone at 30 min post-infusion. Discussion This exploratory study confirms the value of CT imaging as a non-invasive method of assessing real-time spatial and temporal behavior of SC-administered fluids. This technique could help to assess the dispersion pattern of novel rHuPH20 SC co-formulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []