Nucleosynthesis of light trans-Fe isotopes in ccSNe: Implications from presolar SiC-X grains

2020 
This contribution presents an extension of our r-process parameter study within the high-entropy-wind (HEW) scenario of corecollapse supernovae (ccSNe). One of the primary aims of this study was to obtain indications for the production of classical p-, s- and r-isotopes of the light trans-Fe elements in the Solar System (S.S.). Here, we focus on the nucleosynthesis origin of the anomalous isotopic compositions of Zr, Mo and Ru in presolar SiC X-grains (SNe grains). In contrast to the interpretation of other groups, we show that these grains do not represent the signatures of a ‘clean’ stellar scenario, but rather, are mixtures of an exotic nucleosynthesis component and S.S. material. We further confirm the results of our earlier studies whereby sizeable amounts of all stable p-, s- and r-isotopes of Zr, Mo and Ru can be co-produced by moderately neutron-rich ejecta of the low-entropy, charged-particle scenario of ccSNe (type II). The synthesis of these isotopes through a ‘primary’ production mode provides further means to revise the abundance estimates of the light trans-Fe elements from so far favoured ‘secondary’ scenarios like Type Ia SNe or neutron-bursts in exploding massive stars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []