Design, synthesis and stepwise optimization of nitrile-based inhibitors of cathepsins B and L

2020 
Abstract Human cathepsin B (CatB) is an important biological target in cancer therapy. In this work, we performed a knowledge-based design approach and the synthesis of a new set of 19 peptide-like nitrile-based cathepsin inhibitors. Reported compounds were assayed against a panel of human cysteine proteases: CatB, CatL, CatK, and CatS. Three compounds (7h, 7i, and 7j) displayed nanomolar inhibition of CatB and selectivity over CatK and CatL. The selectivity was achieved by using the combination of a para biphenyl ring at P3, halogenated phenylalanine in P2 and Thr-O-Bz group at P1. Likewise, compounds 7i and 7j showed selective CatB inhibition among the panel of enzymes studied. We have also described a successful example of bioisosteric replacement of the amide bond for a sulfonamide one [7e→6b], where we observed an increase in affinity and selectivity for CatB while lowering the compound lipophilicity (ilogP). Our knowledge-based design approach and the respective structure-activity relationships provide insights into the specific ligand-target interactions for therapeutically relevant cathepsins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []