Synthesis of baicalein derivatives as potential anti‐aggregatory and anti‐inflammatory agents

2005 
The direct acylation of trimethoxyphenol (1) with substituted cinnamoyl chlorides followed by Fries rearrangement and cyclization afforded a practical route for the synthesis of novel baicalein derivatives 4 functionalized on the B-ring in good overall yields. In the methylthiazoletetrazolium bromide (MTT) assay, none of the synthetic polyhydroxyflavonoids were cytotoxic at concentrations up to 200 μm on lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages over 24 h, while in the same cells they significantly inhibited NO production. Among the derivatives, 4d (IC50 = 46.1 ± 0.3 μm) was found to exhibit the most potent activity compared with N-nitro-L-arginine methyl ester (L-NAME, IC50 > 300 μm). Compounds 4b, 4e, 4f, 4h and 4i remarkably inhibited platelet aggregation induced by arachidonic acid and collagen in rabbit washed platelets compared with aspirin. Analysis of their structure-activity relationships indicated that, in the structural modification on the B-ring of baicalein (4a), introduction of appropriate electro-withdrawing substituents such as 2-CI (4b), 4-CI (4d), and 4-phenyl (4i) notably increased the potency on the inhibition of LPS-activated NO production and arachidonic acid- and collagen-induced aggregation. Baicalein itself was equally effective in the inhibition of LPS-activated NO production and collagen-induced aggregation but less active against arachidonic acid-induced aggregation. Our in-vitro results suggested that by appropriate structural modification of baicalein it may be possible to develop novel therapeutic agents against platelet-aggregation and inflammation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    39
    Citations
    NaN
    KQI
    []