Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia

2021 
Summary The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and myosin-15 mutations cause profound deafness. In a companion study, we report that myosin-15 nucleates actin filament (“F-actin”) assembly and identify a progressive hearing loss mutation (p.D1647G, “jordan”) which disrupts stereocilia elongation by inhibiting actin polymerization. Here, we present cryo-EM structures of myosin-15 bound to F-actin, providing a framework for interpreting deafness mutations and their impacts on myosin-stimulated actin assembly. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin’s D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. ADP-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin’s structural plasticity in a myosin nucleotide-state dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    2
    Citations
    NaN
    KQI
    []