Corrosion of Copper in Unpolluted Chloride-Rich Atmospheres

2018 
The atmospheric corrosion of copper in pure coastal atmospheres has not been extensively studied. This paper presents the results of research carried out in pure coastal atmospheres with annual chloride deposition rates of between 110–1640 mg/m2·d. Copper specimens (99.99 wt % Cu) were exposed for 3, 6, 9, and 12 months at six testing stations located at different distances from the seashore. Tests were performed to determine the copper corrosion rate, the surface area coated with corrosion products, and the evolution of both magnitudes with exposure time. Conventional and grazing X-ray diffraction techniques were used to analyze the corrosion products formed—cuprite and the polymorphs botallackite, atacamite, and clinoatacamite—and their presence through the patina thickness, while scanning electron microscopy/energy dispersive X-ray spectrometry was employed to study the morphology of the resulting corrosion layers. The most relevant findings are a notable increase in atacamite and clinoatacamite formation at higher atmospheric salinity levels and longer exposure times, and the flaking-off of the corrosion product layer formed in the marine atmospheres with the highest chloride deposition rates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    9
    Citations
    NaN
    KQI
    []