Cleavage of PGAM5 by the intramembrane protease PARL is governed by transmembrane helix dynamics and oligomeric state

2021 
The intramembrane protease PARL is a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. PGAM5 substrate determinates have not been rigorously investigated and it is unclear how uncoupling the mitochondrial membrane potential regulates its processing inversely to PINK1. Here we show that in PGAM5 several hydrophilic residues distant from the cleavage site serve as key determinant for PARL-catalyzed cleavage. NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal helix harboring the scissile peptide bond, is key for a productive interaction with PARL. In difference to PINK1, PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers that are vulnerable to PARL-catalyzed processing. We suggest a model in which PGAM5 is a slowly processed substrate with PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features including a membrane-potential-dependent oligomeric switch.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    0
    Citations
    NaN
    KQI
    []