Synthesis of proton conductive inorganic–organic hybrid membranes through copolymerization of dimethylethoxyvinylsilane with vinylphosphonic acid

2008 
Proton conductive inorganic–organic hybrid membranes were synthesized from dimethylethoxyvinylsilane (DMEVS), vinylphosphonic acid (VPA) and 3-glycidoxypropyltrimethoxysilane (GPTMS) through copolymerization followed by sol–gel process. The ratio of phosphorus to silicon in the copolymer almost corresponded to the charged molar ratio of VPA to DMEVS when the ratio of VPA to DMEVS was below 1/2. Self-standing, homogeneous, highly transparent membranes were synthesized from DMEVS–VPA copolymer and GPTMS via sol–gel condensation. Differential thermal analysis-thermogravimetry analyses indicated that these membranes were thermally stable up to 200 °C. The results of Fourier transform infrared and 13C NMR revealed that phosphonic acid groups of VPA were chemically bound to organosiloxane network. The copolymerization and condensation of (DMEVS–VPA)/GPTMS were confirmed by 31P and 29Si NMR spectra. The proton conductivity of the hybrid membranes increased with phosphonic acid content. The membrane of (DMEVS–VPA)/GPTMS showed a remarkable conductivity of 6.3 × 10−2 S cm−1 at 130 °C and 100% relative humidity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    12
    Citations
    NaN
    KQI
    []