Design and Validation of Ultra-Fast Charging Infrastructures Based on Supercapacitors for Urban Public Transportation Applications

2019 
The last few decades have seen a significant increase in the number of electric vehicles (EVs) for private and public transportation around the world. This has resulted in high power demands on the electrical grid, especially when fast and ultra-fast or flash (at the bus-stop) charging are required. Consequently, a ground storage should be used in order to mitigate the peak power request period. This paper deals with an innovative and simple fast charging infrastructure based on supercapacitors, used to charge the energy storage system on board electric buses. According to the charging level of the electric bus, the proposed fast charging system is able to provide the maximum power of 180 kW without exceeding 30 s and without using DC–DC converters. In order to limit the maximum charging current, the electric bus is charged in three steps through three different connectors placed between the supercapacitors on board the bus and the fast charging system. The fast charging system has been carefully designed, taking into account several system parameters, such as charging time, maximum current, and voltage. Experimental tests have been performed on a fast charging station prototype to validate the theoretical analysis and functionality of the proposed architecture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    11
    Citations
    NaN
    KQI
    []