Wide band gap amorphous silicon thin films prepared by chemical annealing

1999 
High quality wide gap hydrogenated amorphous silicon films were prepared using a hydrogen chemical annealing technique involving the deposition of thin amorphous silicon films followed by a hydrogen radical (and/or ion) treatment. Thick films were prepared by repeating this process many times. The substrate temperature and the hydrogen treatment time can be used to select optical band gaps ranging from 1.8 to 2.1 eV. Low dangling bond defect densities in the as-deposited films ranging from 3 to 8×1015 cm−3 were measured over the entire optical band gap range. The light induced dangling bond densities were less than those found in standard high quality amorphous silicon. The optical band gap is strongly correlated to the medium range structure characterized by the dihydride density. The electronic transport and stability are correlated with the Si–Si bonding environments and the associated short range order including bond angle and bond length distributions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    39
    Citations
    NaN
    KQI
    []