Robust shaft design to compensate deformation in the hub press-fitting and disk clamping process of 2.5 HDDs

2016 
We investigated deformation of the outer diameter of a shaft due to the hub press-fitting and disk clamping processes associated with a 2.5? hard disk drive. We propose a new robust shaft design to minimize the effect of deformation on the outer diameter of the shaft. We numerically show the effect of deformation on the shaft due to the pressure, stiffness, and damping coefficients of fluid dynamic bearings (FDBs), and the critical mass and excitation response of the rotor-bearing system. We also experimentally measured the axial non-repeatable runout and the amplitude at the half speed whirl frequency of FDBs with both conventional and proposed designs. Through these tests we confirm that the proposed design improves the static and dynamic performance of the FDBs and rotor-bearing system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []