Detection of monohydroxylated polycyclic aromatic hydrocarbons in urine and particulate matter using LC separations coupled with integrated SPE and fluorescence detection or coupled with high‐resolution time‐of‐flight mass spectrometry

2018 
: A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    11
    Citations
    NaN
    KQI
    []