Balancing the strength and ductility of graphene oxide-carbon nanotube hybrid reinforced aluminum matrix composites with bimodal grain distribution

2020 
Abstract Graphene oxide-carbon nanotubes hybrid reinforced aluminum matrix composites (GO-CNT/Al) were prepared by powder metallurgy followed by hot extrusion. The strength of the composites was improved by the synergistic effect of carbon nanotubes, in-situ Al4C3 and graphene oxide. Moreover, due to the partially recrystallization of Al matrix promoted by Al4C3, the matrix exhibits a bimodal grain distribution, which helps to enhance strain-hardening and consequently uniform tensile ductility at high flow stresses. Hence the bimodal grain structure of the matrix combined with the nano-reinforcements leads to enhancing of the strength and ductility synergy. The composite shows a high tensile strength of 249 MPa (175 MPa of pure Al) and keeps almost similar tensile ductility with pure Al (uniform elongation of ∼23.1%).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    4
    Citations
    NaN
    KQI
    []