Multiplacenta derived stem cell/cytokine treatment increases survival time in a mouse model with radiation-induced bone marrow damage.

2016 
Nuclear Warfare and nuclear leakage can result in a large number of patients with radiation-induced bone marrow damage. Based on the fact that hematopoietic stem cells and hematopoietic growth factors are characterized as a novel strategy for therapy, the aim of this study was to explore a safe and routine stem cell/cytokine therapeutic strategy. Allogeneic multiplacenta derived hematopoietic and mesenchymal stem cells/cytokines were intraperitoneally injected into a moderate dose of total body irradiation-induced mouse bone marrow damage model a single time. Then, the mouse posttransplantation survival time, peripheral blood hemoglobin count, bone marrow architecture, and donor cell engraftment were assessed. Each mouse that received placenta-derived stem cells exhibited positive donor hematopoietic and mesenchymal stem cell engraftment both in the bone marrow and peripheral blood after transplantation. The peripheral blood hemoglobin count and survival time were greater in the group with the combined treatment of multiplacenta-derived stem cells and cytokines, compared with model-only controls (both P < 0.001). The blood smear mesenchymal/hematopoietic stem cell count was significantly higher in the combined treatment group than in the mice treated only with placenta-derived cells (28.08 ± 5.824 vs. 20.40 ± 5.989, P < 0.001; 7.74 ± 2.153 vs. 4.23 ± 1.608, P < 0.001, respectively). However, there was no marked change on the bone marrow pathology of any of the experimental mice after the transplantation. These results indicate that for radiation-induced bone marrow damage treatment, multiplacenta-derived stem cells and cytokines can increase the life span of model mice and delay but not abrogate the disease progression. Intraperitoneally transplanted stem cells can survive and engraft into the host body through the blood circulation. Improvement of peripheral blood hemoglobin levels, but not the bone marrow architecture response, probably explains the increase in survival time observed in this study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []