Sulfate formation is dominated by manganese-catalyzed oxidation of SO 2 on aerosol surfaces during haze events

2021 
The formation mechanism of aerosol sulfate during wintertime haze events in China is still largely unknown. As companions, SO2 and transition metals are mainly emitted from coal combustion. Here, we argue that the transition metal-catalyzed oxidation of SO2 on aerosol surfaces could be the dominant sulfate formation pathway and investigate this hypothesis by integrating chamber experiments, numerical simulations and in-field observations. Our analysis shows that the contribution of the manganese-catalyzed oxidation of SO2 on aerosol surfaces is approximately one to two orders of magnitude larger than previously known routes, and contributes 69.2% ± 5.0% of the particulate sulfur production during haze events. This formation pathway could explain the missing source of sulfate and improve the understanding of atmospheric chemistry and climate change. Sulfate aerosols are an important component of wintertime haze events in China, but their production mechanisms are not well known. Here, the authors show that transition metal-catalyzed oxidation of SO2 on aerosol surfaces could be the dominant sulfate formation pathway in Northern China.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    19
    Citations
    NaN
    KQI
    []