Probing the Size-Dependent Polarizability of Mesoscopic Ionic Clusters and Their Induced-Dipole Interactions

2021 
Mesoscopic clusters composed of oppositely charged particles are ubiquitous in synthetic and biological soft materials. The effective interaction between these clusters is influenced by their polarizability, that is, the ability of their constituent charges to re-arrange in response to an external electrical field. Here, using coarse-grained simulations, we show that the polarizability of electrically neutral ionic clusters decreases as the number of constituent charges increases and/or their Coulombic interaction strength increases for various ion valencies, ion densities, and degrees of cluster boundary hardness. For clusters of random ionomers and their counterions, their polarizability is shown to depend on the number of polymer chains. The variation of the cluster polarizability with cluster size indicates that throughout assembly the induced-dipole interactions between the clusters may be reduced substantially as they acquire more charges while remaining electroneutral. Under certain conditions, the induced-dipole interactions may become repulsive, as inferred from our simulations with a polarizable solvent. As a result, the dipole-induced related interactions can serve as a counterbalancing force that contributes to the self-limiting aggregation of charge-containing assemblies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []