Blockchain Technology Enhances Sustainable Higher Education

2021 
This research investigates blockchain technology, focusing on the influence of motivation on collaborative work, which positively influences learning performance in Higher Education Institutions (HEI). In addition, blockchain technology is correlated with decentralisation, security and integrity, and anonymity and encryption. It can also be perceived as a consensus mechanism, rewarding students, professors, and universities as a smart contract. Therefore, this technology has been used to improve higher education. It also allows less informed people to interact with better-informed peers and mentors. Finally, this study aims to enhance the current state of blockchain applications comprehension. The methodology used for this research includes document analysis, literature review, content analysis (blockchain platforms), the case study method, and the survey method. In statistical considerations, aiming to evaluate indicators, this research presents the Composite Reliability Analysis, Cronbach Alpha Coefficients, and the Bootstrapping method (Variance Inflation Factor). All these analyses aimed to present a designed research model. This exploratory research gathered data from 150 students at 3 universities in Serbia, Romania, and Portugal. As demonstrated, using student motivation has a significant and positive impact on the quality of student collaborative work. Student collaborative work also correlates with students’ higher level of engagement in the educational process, and the more engaged students are, the better their learning outcomes will be. As a result, in higher education, student involvement boosted learning outcomes. Researchers found that motivation, teamwork, and student involvement were important factors in improving student learning outcomes, as were blockchain-based tools. The results from the quantitative analysis indicate that Collaborative work, Motivation, Engagement, MOOCs, AR, VR, Gamification, and Online class were associated with learning performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []