Simple Topological Drawings of k-Planar Graphs.

2020 
Every finite graph admits a \emph{simple (topological) drawing}, that is, a drawing where every pair of edges intersects in at most one point. However, in combination with other restrictions simple drawings do not universally exist. For instance, \emph{$k$-planar graphs} are those graphs that can be drawn so that every edge has at most $k$ crossings (i.e., they admit a \emph{$k$-plane drawing}). It is known that for $k\le 3$, every $k$-planar graph admits a $k$-plane simple drawing. But for $k\ge 4$, there exist $k$-planar graphs that do not admit a $k$-plane simple drawing. Answering a question by Schaefer, we show that there exists a function $f : \mathbb{N}\rightarrow\mathbb{N}$ such that every $k$-planar graph admits an $f(k)$-plane simple drawing, for all $k\in\mathbb{N}$. Note that the function $f$ depends on $k$ only and is independent of the size of the graph. Furthermore, we develop an algorithm to show that every $4$-planar graph admits an $8$-plane simple drawing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []