Effects of palmitate and astaxanthin on cell viability and proinflammatory characteristics of mesenchymal stem cells

2019 
Abstract Mesenchymal stem cells (MSCs) have broad immunomodulatory activities. These cells are a stable source of cytokine production such as interleukin-6 (IL6), monocyte chemoattractant protein-1 (MCP-1/CCL2) and vascular endothelial growth factor (VEGF). Fatty acid elevation in chronic metabolic diseases alters the microenvironment of MSCs and thereby, might affect their survival and cytokine production. In the present study, we investigated the effects of palmitate, the most abundant saturated free fatty acid (FFA) in plasma, and astaxanthin, a potent antioxidant, on cell viability and apoptosis in human bone marrow-driven mesenchymal stem cells. We also elucidated how palmitate and astaxanthin influence the inflammation in MSCs. Human mesenchymal stem cells were collected from an aspirate of the femurs and tibias marrow compartment. The effect of palmitate on cell viability, caspase activity and pro-inflammatory cytokines expression and secretion were evaluated. In addition, activation of the MAP kinases and NF-kB signaling pathways were investigated. The results showed that astaxanthin protected MSCs from palmitate-induced cell death. We found that palmitate significantly enhanced IL-6, VEGF and MCP-1 expression, and secretion in MSC cells. Increased cytokine expression was parallel to the enhanced phosphorylation of P38, ERK and IKKα-IKKβ. In addition, pretreatment with JNK, ERK, P38, and NF-kB inhibitors could correspondingly attenuate palmitate-induced expression of VEGF, IL-6, and MCP-1. Our results demonstrated that fatty acid exposure causes inflammatory responses in MSCs that can be alleviated favorably by astaxanthin treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []