Spatiotemporal characterization of the laser-induced plasma plume in simulated Martian conditions

2021 
Abstract With ChemCam on NASA's Curiosity rover, SuperCam on NASA's Perseverance rover, and MarSCoDe on the Zhurong rover of the China National Space Administration, there are currently three instruments on Mars that employ laser-induced breakdown spectroscopy (LIBS) to analyze the chemical composition of Martian rocks and soils. With more than 880,000 LIBS measurements on Mars by ChemCam alone, the LIBS technique has been proven to be uniquely qualified for the in-situ robotic exploration of planetary surfaces. Since the laser-induced plasma exhibits a complex spatiotemporal evolution that has a significant impact on the recorded LIBS spectra, fundamental investigations of the plasma propagation and the spatial distributions of the plasma emissions can provide important insight that can help to improve the analysis of Martian LIBS spectra. Here we present first results from our LIBS plasma imaging setup, which allows us to spatially and temporally resolve the spectral emissions from the laser-induced plasma in simulated Martian atmospheric conditions. Investigating a calcium sulfate sample, we find that the commonly applied assumption of a nearly isothermal and homogeneous plasma with a colder outer layer is not sufficient to describe the laser-induced plasma on Mars. Instead, different spectral features show unique spatial distributions that suggest a strong influence of the outgoing shock wave. After plasma formation, the plasma center is found to rapidly become colder and more rarefied than the outer plasma regions. Molecular emissions are found to originate in this cold plasma center.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []