Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway

2010 
Peroxisomes are ubiquitous subcellular organelles, which multiply by growth and division but can also form de novo via the endoplasmic reticulum. Growth and division of peroxisomes in mammalian cells involves elongation, membrane constriction and final fission. Dynamin-like protein (DLP1/Drp1) and its membrane adaptor Fis1 function in the later stages of peroxisome division, whereas the membrane peroxin Pex11pβ appears to act early in the process. We have discovered that a Pex11pβ-YFPm fusion protein can be used as a specific tool to further dissect peroxisomal growth and division. Pex11pβ-YFPm inhibited peroxisomal segmentation and division, but resulted in the formation of pre-peroxisomal membrane structures composed of globular domains and tubular extensions. Peroxisomal matrix and membrane proteins were targeted to distinct regions of the peroxisomal structures. Pex11pβ-mediated membrane formation was initiated at pre-existing peroxisomes, indicating that growth and division follows a multistep maturation pathway and that formation of mammalian peroxisomes is more complex than simple division of a pre-existing organelle. The implications of these findings on the mechanisms of peroxisome formation and membrane deformation are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    72
    Citations
    NaN
    KQI
    []