Three-Dimensional Integration Technology Based on Wafer Bonding With Vertical Buried Interconnections

2006 
A three-dimensional (3-D) integration technology has been developed for the fabrication of a new 3-D shared-memory test chip. This 3-D technology is based on the wafer bonding and thinning method. Five key technologies for 3-D integration were developed, namely, the formation of vertical buried interconnections, metal microbump formations, stacked wafer thinning, wafer alignment, and wafer bonding. Deep trenches having a diameter of 2 mum and a depth of approximately 50 mum were formed in the silicon substrate using inductively coupled plasma etching to form vertical buried interconnections. These trenches were oxidized and filled with n+ polycrystalline silicon or tungsten. The 3-D devices and 3-D shared-memory test chips with three-stacked layers were fabricated by bonding the wafers with vertical buried interconnections after thinning. No characteristic degradation was observed in the fabricated 3-D devices. It was confirmed that fundamental memory operation and broadcast operation between the three memory layers could be successfully performed in the fabricated 3-D shared-memory test chip
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    204
    Citations
    NaN
    KQI
    []