Integrated computational analyses reveal novel insights into the stromal microenvironment of SHH-subtype medulloblastoma.

2021 
Medulloblastoma is the most common malignant brain tumour of childhood. While our understanding of this disease has progressed substantially in recent years, the role of tumour microenvironment remains unclear. Given the increasing role of microenvironment-targeted therapeutics in other cancers, this study was aimed at further exploring its role in medulloblastoma. Multiple computational techniques were used to analyze open-source bulk and single cell RNA seq data from primary samples derived from all subgroups of medulloblastoma. Gene expression is used to infer stromal subpopulations, and network-based approaches are used to identify potential therapeutic targets. Bulk data was obtained from 763 medulloblastoma samples and single cell data from an additional 7241 cells from 23 tumours. Independent bulk (285 tumours) and single cell (32,868 cells from 29 tumours) validation cohorts were used to verify results. The SHH subgroup was found to be enriched in stromal activity, including the epithelial-to-mesenchymal transition, while group 3 is comparatively stroma-suppressed. Several receptor and ligand candidates underlying this difference are identified which we find to correlate with metastatic potential of SHH medulloblastoma. Additionally, a biologically active gradient is detected within SHH medulloblastoma, from “stroma-active” to “stroma-suppressed” cells which may have relevance to targeted therapy. This study serves to further elucidate the role of the stromal microenvironment in SHH-subgroup medulloblastoma and identify novel treatment possibilities for this challenging disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []