KATP and TRPM2-like channels couple metabolic status to resting membrane potential of octopus neurons in the mouse ventral cochlear nucleus.

2021 
ATP-sensitive potassium (KATP) channels and transient receptor potential melastatin 2 (TRPM2) channels are commonly expressed both pre- and postsynaptically in the central nervous system (CNS). We hypothesized that KATP and TRPM2 may couple metabolic status to the resting membrane potential of octopus neurons of the mouse ventral cochlear nucleus (VCN). Therefore, we studied the expression of KATP channels and TRPM2 channels in octopus cells by immunohistochemical techniques and their contribution to neuronal electrical properties by the electrophysiological patch clamp technique. In immunohistochemical staining of octopus cells, labelling with Kir6.2 and SUR1 antibodies was strong, and labelling with the SUR2 antibody was moderate, but labelling with Kir6.1 was very weak. Octopus cells had intense staining with TRPM2 antibodies. In patch clamp recordings, bath application of KATP channel agonists H2O2 (880 μM), ATZ (1 mM), cromakalim (50 μM), diazoxide (200 μM), NNC 55-0118 and NN 414 separately resulted in hyperpolarizations of resting potential to different extents. Application of 8-Bro-cADPR (50 μM), a specific antagonist of TRPM2 channels, in the presence of H2O2 (880 μM) resulted in further hyperpolarization by approximately 1 mV. The amplitudes of H2O2-induced outward KATP currents and ADPR-induced inward currents were 206.1 ± 31.5 pA (n = 4) and 136.8 ± 22.4 pA, respectively, at rest. Their respective reversal potentials were -77 ± 2.6 mV (n = 3) and -6.3 ± 2.9 (n = 3) and -6.3 ± 2.9 (n = 3). In conclusion, octopus cells appear to possess both KATP channels and TRPM2-like channels. KATP might largely be constituted by SUR1-Kir6.2 subunits and SUR2-Kir6.2 subunits. Both KATP and TRPM2-like channels might have a modulatory action in setting the membrane potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    0
    Citations
    NaN
    KQI
    []