Roller Burnishing of Particle Reinforced Aluminium Matrix Composites

2018 
Energy and resource efficient systems often demand the use of light-weight materials with a specific combination of properties. However, these requirements usually cannot be achieved with homogeneous materials. Consequently, composites enabling tailored properties gain more and more importance. A special kind of these materials is aluminium matrix composites (AMCs), which offer elevated strength and wear resistance in comparison to the matrix alloy. However, machining of these materials involves high tool wear and surface imperfections. An approach to producing high-quality surfaces consists in roller burnishing of AMCs. Furthermore, such forming technologies allow for the generation of strong compressive residual stresses. The investigations address the surface properties in the roller burnishing of AMCs by applying different contact forces and feeds. For the experiments, specimens of the alloy AA2124 reinforced with 25% volume proportion of SiC particles are used. Because of the high hardness of the ceramic particles, roller bodies were manufactured from cemented carbide. The results show that roller burnishing enables the generation of smooth surfaces with strong compressive residual stresses in the matrix alloy. The lowest surface roughness values are achieved with the smallest feed (0.05 mm) and the highest contact force (750 N) tested. Such surfaces are supposed to be beneficial for components exposed to dynamic loads.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    9
    Citations
    NaN
    KQI
    []