Anisotropic reaction field correction for long-range electrostatic interactions in molecular dynamics simulations

2018 
Reaction-field (RF) methods have been extensively used in molecular dynamics simulations to efficiently compute long-range electrostatic interactions. They assume a continuous dielectric medium outside a certain cutoff, which has shown to be a reasonable approximation in many cases. However, lattice sum or fast multipole methods are nowadays often used instead, which treat long-range interactions explicitly but may introduce different artefacts. In the following work, the major issue of RFs is addressed, i.e., their inability to account for inhomogeneity even in heterogenous environments (e.g., membranes or protein binding pockets). By using a first-order Laplace series expansion of the dielectric permittivity on the cutoff sphere, local anisotropic effects can be described in a simple form. It is shown that the resulting boundary-value problem cannot be solved analytically, but instead a well-behaved approximative anisotropic reaction field (ARF) is introduced, which preserves coordinate invariance and a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []