Pasta Structure Affects Mastication, Bolus Properties, and Postprandial Glucose and Insulin Metabolism in Healthy Adults.

2021 
Background Structure and protein-starch interactions in pasta products may be responsible for lower postprandial glycemic responses compared with other cereal foods. Objective We tested the effect on postprandial glucose metabolism induced by two pasta products, couscous and bread, through their structural changes during mastication and simulated gastric digestion. Methods Two randomized controlled trials (n = 30/trial) in healthy normal weight adults (23.9 and 23.0 kg/m2) evaluated postprandial glucose metabolism modulation to 50g of available carbohydrate portions of durum wheat semolina spaghetti, penne, couscous, and bread. A mastication trial involving 26 normal weight adults was conducted to investigate mastication processes and changes in particle size distribution and microstructure (light microscopy) of boluses after mastication and in vitro gastric digestion. Results Both pasta products resulted in lower areas under the 2h-curve for blood glucose (-40% for spaghetti and -22% for penne vs couscous; -41% for spaghetti and -30% for penne vs bread), compared with the other grain products (P Conclusions Preservation of the pasta structure during mastication and gastric digestion explains slower starch hydrolysis and, consequently, lower postprandial glycemia compared to bread or couscous prepared from the same durum wheat semolina flour in healthy adults. Postprandial in vivo trials were registered at clinicaltrials.gov as NCT03098017 & NCT03104686.Clinical Trial Registry: NCT03098017 & NCT03104686 www.clinicaltrials.gov.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []