ZFP207 controls pluripotency by multiple post-transcriptional mechanisms

2021 
The pluripotent state is not solely governed by the action of the core transcription factors Oct4, Sox2, and Nanog, but also by a series of co-transcriptional and post-transcriptional events, including alternative splicing (AS) and the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs. Zinc Finger Protein 207 (ZFP207) is an essential transcription factor for mammalian embryonic development. Here, we employ multiple functional analyses to characterize the role of ZFP207 in mouse embryonic stem cells (ESCs). We find that ZFP207 plays a pivotal role in ESC maintenance, and silencing of Zfp207 leads to severe neuroectodermal differentiation defects. In striking contrast to human ESCs, ZFP207 does not transcriptionally regulate stem cell and neuronal-related genes but exerts its effects by control AS networks and acting as an RBP. Our study expands the role of ZFP207 to maintain ESC identity, and underscores ZFP207 functional versatility with key roles in neural fate commitment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []