Darboux diagonalization of the spatial 3-metric in Kerr spacetime

2021 
The astrophysical importance of the Kerr spacetime cannot be overstated. Of the currently known exact solutions to the Einstein field equations, the Kerr spacetime stands out in terms of its direct applicability to describing astronomical black hole candidates. In counterpoint, purely mathematically, there is an old classical result of differential geometry, due to Darboux, that all 3-manifolds can have their metrics recast into diagonal form. In the case of the Kerr spacetime the Boyer–Lindquist coordinates provide an explicit example of a diagonal spatial 3-metric. Unfortunately, as we demonstrate herein, Darboux diagonalization of the spatial 3-slices of the Kerr spacetime is incompatible with simultaneously putting the Kerr metric into unit-lapse form while retaining manifest axial symmetry. This no-go theorem is somewhat reminiscent of the no-go theorem to the effect that the spatial 3-slices of the Kerr spacetime cannot be chosen to be conformally flat.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    3
    Citations
    NaN
    KQI
    []