N-Doped Nanoporous Carbon from Biomass as a Highly Efficient Electrocatalyst for the CO2 Reduction Reaction

2019 
Electrocatalytic reduction of carbon dioxide to high value-added chemicals is essential for sustainable development of human civilization. Seeking catalysts with high activity, selectivity, stability, and low cost is vital for CO2 conversion. Heteroatom doped carbon materials have proven to be very promising catalysts for CO2 reduction due to their low cost, high surface area, high conductivity, and excellent stability as well as high electrochemical activity. Herein, we report a N-doped nanoporous carbon sheet derived from cheap and renewable biomass Typha with high surface area, pore volume, and pyridinic N content, which achieved a much higher selectivity (90%) for CO at a much lower overpotential (−0.31 V) than most N-doped carbon materials. The calcination temperature has a great effect on porous structure and the kinds of N species in the catalyst, in which the pyridinic N species play important roles in catalytic performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    19
    Citations
    NaN
    KQI
    []