Coherent Vibrational Wavepacket Dynamics in Platinum(II) Dimers and Their Implications

2018 
Vibrational coherence in the metal–metal-to-ligand-charge transfer (MMLCT) excited state of cyclometalated platinum dimers with a pseudo C2 symmetry was investigated where two nearly degenerate transitions from the highest occupied molecular orbital (metal–metal σ* orbital) to higher energy ligand π* orbitals could be simultaneously induced. We observed oscillatory features in femtosecond degenerate transient absorption (TA) signals from complexes [(ppy)Pt(μ-tBu2pz)]2 (1) and anti-[(ppy)Pt(μ-pyt)]2 (2), which are attributed to coherent nuclear motions that modulate the HOMO (antibonding σ*) energy level, and hence, the energy for the MMLCT transition. The characteristics of such coherent nuclear motions, such as the oscillatory frequency and the dephasing time, differ between 1 and 2 and are explained by mainly two structural factors that could influence the vibrational coherence: the Pt–Pt distance (2.97 A for 1 vs 2.85 A for 2) and molecular shape (1 in an “A” frame vs 2 in an “H” frame). Because the el...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    16
    Citations
    NaN
    KQI
    []