JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress.

2015 
High chilling-susceptibility is becoming the bottleneck for cultivation and commercialization of Jatropha curcas L. For insights to chilling resistance ability of this plant species, a cold response transcription factor, JcCBF2, was cloned and studied. It codes a 26 kDa protein, which contains all conserved motifs unique to the C-repeat binding factor (CBF) family and has high similarity to CBFs of Ricinus communis and Populus. Its transcripts express specifically in leaves of Jatropha at cold temperature. After transmitting the report vector, 35S::JcCBF2-GFP, into Arabidopsis thaliana, JcCBF2 protein is main detected in cell nucleus, being consistent to the nuclear orientation signal in its N-terminal. Compared to the control Arabidopsis, the frozen leaves of JcCBF2-overexpressed seedlings grow stronger with less malondialdehyde, smaller leaf conductivity and activer superoxide dismutase, showing their higher freezing tolerance. RT-PCR tests revealed that JcCBF2 functioned mainly at the early stage (0–6 h) of resistance events in Arabidopsis, and its transcripts reduced after 6 h. In addition, JcCBF2 could quickly regulate transcripts of some cold-responsive (COR) genes such as RD29A, COR105A and COR6.6, also during the early stage of frozen treatment. This study not only proves the chilling resistance roles of JcCBF2, but also presents a candidate gene engineering for improvement of chilling tolerance in J. curcas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    12
    Citations
    NaN
    KQI
    []