Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome

2015 
Plant cryptochromes are photosensory receptors that regulate various central aspects of plant growth and development. These receptors consist of a photolyase homology region (PHR) carrying the oxidized flavin adenine dinucleotide (FAD) cofactor, and a cryptochrome C-terminal extension (CCT), which is essential for signaling. Absorption of blue/UVA light leads to formation of the FAD neutral radical as the likely signaling state, and ultimately activates the CCT. Little is known about the signal transfer from the flavin to the CCT. Here, we investigated the photoreaction of the PHR by time-resolved step-scan FT-IR spectroscopy complemented by UV–vis spectroscopy. The first spectrum at 500 ns shows major contributions from the FAD anion radical, which is demonstrated to then be protonated by aspartic acid 396 to the neutral radical within 3.5 μs. The analysis revealed the existence of three intermediates characterized by changes in secondary structure. A marked loss of β-sheet structure is observed in the s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    39
    Citations
    NaN
    KQI
    []